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Abstract

Pseudo-splines constitute a new class of refinable functions with B-splines, interpolatory refinable func-
tions and refinable functions with orthonormal shifts as special examples. Pseudo-splines were first intro-
duced by Daubechies, Han, Ron and Shen in [Framelets: MRA-based constructions of wavelet frames, Appl.
Comput. Harmon. Anal. 14(1) (2003), 1–46] and Selenick in [Smooth wavelet tight frames with zero mo-
ments, Appl. Comput. Harmon. Anal. 10(2) (2001) 163–181], and their properties were extensively studied
by Dong and Shen in [Pseudo-splines, wavelets and framelets, 2004, preprint]. It was further shown by
Dong and Shen in [Linear independence of pseudo-splines, Proc. Amer. Math. Soc., to appear] that the shifts
of an arbitrarily given pseudo-spline are linearly independent. This implies the existence of biorthogonal
dual refinable functions (of pseudo-splines) with an arbitrarily prescribed regularity. However, except for
B-splines, there is no explicit construction of biorthogonal dual refinable functions with any given regular-
ity. This paper focuses on an implementable scheme to derive a dual refinable function with a prescribed
regularity. This automatically gives a construction of smooth biorthogonal Riesz wavelets with one of them
being a pseudo-spline. As an example, an explicit formula of biorthogonal dual refinable functions of the
interpolatory refinable function is given.
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1. Introduction

Pseudo-splines were first introduced in [10] and [35] to obtain tight framelets via the unitary
extension principle of [32] with better approximation orders. They were then extended and ex-
tensively studied in [11]. Pseudo-splines are compactly supported refinable functions in L2(R).
Recall that a function � ∈ L2(R) is refinable if it satisfies the refinement equation

� = 2
∑
k∈Z

a(k)�(2 · −k) (1.1)

for some sequence a ∈ �2(Z). The sequence a is the refinement mask of �.
By L2(R) we denote all the functions f (x) satisfy

‖f (x)‖L2(R) :=
(∫

R
|f (x)|2 dx

)1/2

< ∞,

and �2(Z) the set of all sequences u defined on Z such that

‖u‖�2(Z) :=
(∑

k∈Z

|u(k)|2
)1/2

< ∞.

The Fourier–Laplace transform of a compactly supported (measurable) function f is defined
by

f̂ (�) :=
∫

R
f (x)e−i�x dx, � ∈ C.

When f is compactly supported and bounded, the Fourier–Laplace transform of f is analytic.
When � is restricted to R, f̂ becomes the Fourier transform of f .

The Fourier series û of a sequence u in �2(Z) is defined by

û(�) :=
∑
k∈Z

u(k)e−ik�, � ∈ R.

With these, the refinement equation (1.1) can be written in terms of its Fourier transform as

�̂(�) = â(�/2)�̂(�/2), � ∈ R.

We also call â a refinement mask, or just mask for convenience.
Pseudo-splines are defined in terms of their refinement masks. The refinement mask of a

pseudo-spline of type I with order (m, l) is given by

|1â(�)|2 := |1â(m,l)(�)|2 := cos2m(�/2)

l∑
j=0

(
m + l

j

)
sin2j (�/2) cos2(l−j)(�/2) (1.2)

and the refinement mask of a pseudo-spline of type II with order (m, l) is given by

2â(�) := 2â(m,l)(�) := cos2m(�/2)

l∑
j=0

(
m + l

j

)
sin2j (�/2) cos2(l−j)(�/2), (1.3)

where m�1 and 0� l�m − 1. We note that |1â(m,l)(�)|2 = 2â(m,l)(�). Hence, 1â(m,l) is the
square root of 2â(m,l), which is a 2�-periodic trigonometric polynomial with real coefficients by



B. Dong, Z. Shen / Journal of Approximation Theory 138 (2006) 211–231 213

Fejér–Riesz Lemma (see e.g. [9]). The corresponding pseudo-splines can be defined in terms of
their Fourier transforms as

k�̂(m,l)(�) :=
∞∏

j=1

kâ(m,l)(2
−j�), k = 1, 2,

with k�̂(m,l)(0) = 1. Unless it is necessary, we use ka and k� instead of ka(m,l) and k�(m,l),
k = 1, 2, i.e. we drop the subscript “(m, l)” or “k” in ka(m,l) and k�(m,l) for simplicity, whenever
it is clear from the context.

The first type of pseudo-splines were introduced in [10] and [35] in their constructions of tight
framelets derived from the unitary extension principle of [32] with desired approximation order
for the truncated frame series. The second type of pseudo-splines were introduced in [11,35],
where in [11] a detailed analysis of regularity and constructions of short Riesz wavelets and
(anti)symmetric tight framelets were given. Pseudo-splines constitute a large class of refinable
functions which includes B-splines, the orthogonal refinable functions (i.e. the refinable function
with orthonormal shifts constructed by [8]) and the interpolatory refinable functions (which are
the autocorrelations of the orthogonal refinable functions and were first studied by [13]) as its
special cases. Recall that a B-spline (see e.g. [1]) with order m and its refinement mask are defined
by

B̂m(�) = e−ij
�
2

(
sin(�/2)

�/2

)m

and â(�) = e−ij
�
2 cosm(�/2),

where j = 0 when m is even, j = 1 when m is odd. A continuous function � is said to be
interpolatory if

�(j) = �(j), j ∈ Z,

where �(0) = 1 and �(j) = 0, for j �= 0. By definitions of refinement masks of pseudo-
splines given in (1.2) and (1.3), one can see that when l = 0, pseudo-splines are B-splines; when
l = m − 1, pseudo-splines are the orthogonal refinable functions for type I and the interpolatory
refinable functions for type II. Pseudo-splines of the other orders fill in the gaps between B-splines
and the orthogonal refinable functions for type I, and B-splines and the interpolatory refinable
functions for type II.

For a given compactly supported � ∈ L2(R), a shift (integer translation) invariant space
generated by � is defined by

V0(�) := Span{�(· − k), k ∈ Z}. (1.4)

We say that the generator � is stable, if {�(·− k)}k∈Z forms a Riesz basis for V0(�). The stability
of a function can be characterized by its bracket product. The bracket product of functions f, g ∈
L2(R) is defined by

[f̂ , ĝ ](�) :=
∑
k∈Z

f̂ (� + 2�k)ĝ(� + 2�k).

A compactly supported distribution � is said to be pre-stable if there exists C1 > 0 such that

[�̂, �̂](�)�C1,
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for almost all � ∈ R. It is known that (see e.g. [22]) the pre-stability of a compactly supported
distribution � is equivalent to that the Fourier transform of � does not have 2�-periodic zeros, i.e.(

�̂(� + 2�k)
)

k∈Z
�= 0 for all � ∈ R, (1.5)

where 0 is zero sequence. A function � ∈ L2(R) is stable if and only if there exist C1, C2 > 0 s.t.

C1 � [�̂, �̂ ](�)�C2, (1.6)

for almost all � ∈ R. Since � is compactly supported, the upper bound in (1.6) holds immediately
(see e.g. [22,24]). Therefore, a compactly supported function � ∈ L2(R) is stable if and only if
it is pre-stable.

Another related, but stronger, concept used here is the linear independence of � and its shifts.
The shifts of a compactly supported distribution � is linearly independent, if∑

j∈Z

b(j)�(· − j) = 0 implies b(j) = 0 for all j ∈ Z and b ∈ �(Z),

where �(Z) denotes the space of all complex valued sequences defined on Z. For a finitely
supported sequence a, we define the Laurent polynomial ã(z) as

ã(z) :=
∑
j∈Z

a(j)zj for z ∈ C\{0}.

If a is the refinement mask of a compactly supported refinable function � ∈ L2(R), the Laurent
polynomial ã is called the symbol of �, and the refinement equation (1.1) can be written in terms
of its Fourier–Laplace transform as

�̂(�) = ã(e−i�/2)�̂(�/2) for all � ∈ C.

It was shown in [30] that the shifts of a compactly supported distribution are linearly independent
if and only if the Fourier–Laplace transform of � satisfies(

�̂(� + 2�k)
)

k∈Z
�= 0 for all � ∈ C. (1.7)

Comparing (1.5) and (1.7), we can see immediately that for a compactly supported function
� ∈ L2(R), linear independence of the shifts of � implies the stability of �. Actually (see
e.g. [12,24]), the linear independence of the shifts of a compactly supported refinable function
� ∈ L2(R) is equivalent to that � is stable and the symbol ã(z) does not have symmetric zeros on
C\{0}, i.e. ã(z) and ã(−z) do not have common zeros on C\{0}. Based on this, it was proved in
[12] that all pseudo-splines have linearly independent shifts, i.e. all pseudo-splines are stable and
their symbols do not have symmetric zeros on C\{0}. One should consult [12] for more details.

We shall also introduce the concept of multiresolution analysis (MRA), since all constructions
considered in this paper is based on MRA. Define

Vj (�) := {f (2j ·) : f ∈ V0(�), j ∈ Z},
where V0(�) is defined in (1.4) with � ∈ L2(R) being a compactly supported refinable function.
Then, the sequence of spaces (Vj )j∈Z forms an MRA generated by �, i.e. (i) Vj ⊂ Vj+1, ∀j ∈
Z, (ii)

⋃
j∈Z Vj = L2(R),

⋂
j∈Z Vj = {0} (see e.g. [2,23]).
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For a given wavelet � ∈ L2(R), define the wavelet system by

X(�) := {�j,k = 2j/2�(2j · −k), j, k ∈ Z}.
We call the system X(�) a Bessel system if for some C1 > 0, and for every f ∈ L2(R),∑

g∈X(�)

|〈f, g〉|2 �C1‖f ‖2
L2(R).

A Bessel system X(�) is a Riesz basis for L2(R) if there exists C2 > 0 such that

C2‖{cj,k}‖�2(Z
2)

�

∥∥∥∥∥∥
∑

(j,k)∈Z2

cj,k�j,k

∥∥∥∥∥∥
L2(R)

for all {cj,k} ∈ �2(Z
2),

and the span of X(�) is dense in L2(R). We call the function � Riesz wavelet and X(�) Riesz
wavelet system, if X(�) forms a Riesz basis for L2(R). Two wavelet systems X(�) and X(�d)

are said to be biorthogonal Riesz wavelet bases, if they are Riesz wavelet systems and for all
f ∈ L2(R),

f =
∑

j,k∈Z

〈f, �j,k〉�d
j,k.

Moreover, we call � and �d biorthogonal (Riesz) wavelets. The main goal of this paper is to
construct a pair of compactly supported biorthogonal Riesz wavelets X(�) and X(�d), such that
� is a linear combination of a pseudo-spline and the dual wavelet �d satisfies any prescribed
regularity.

Now we give a general framework of the MRA-based construction of biorthogonal wavelets
starting from a given refinable function. Constructions of biorthogonal wavelets have been exten-
sively studied in the literature. The interested reader can find general discussions in [5,6,4,9,17,19],
and the references there.

Let � ∈ L2(R) be a compactly supported stable refinable function with finitely supported
refinement mask a. The first step of the construction of a pair of compactly supported biorthogonal
wavelets is to find a compactly supported stable refinable function �d ∈ L2(R) with finitely
supported refinement mask ad satisfying

〈�, �d(· − k)〉 = �(k), k ∈ Z. (1.8)

If a stable refinable function �d ∈ L2(R) satisfies (1.8), we call it the (biorthogonal) dual refinable
function of �, or just dual of � for simplicity. A necessary condition for � and �d to satisfy
(1.8) is

â âd + â(· + �)̂a d(· + �) = 1. (1.9)

We call ad a dual refinement mask, or just dual mask for convenience. Most constructions start
with finding ad to satisfy (1.9). Suppose we have a dual mask ad in hand. We then need to
check whether the corresponding refinable function �d is in L2(R) and stable, which can be done
through the transition operator (see e.g. [6,26,36]). With the stable dual pair � and �d and their
refinement masks a and ad satisfying (1.9), the dual pair of wavelets can be constructed (see e.g.
[6,9]) as

�̂(2�) = b̂(�)�̂(�) and �̂
d
(2�) = b̂ d (�)�̂

d
(�), (1.10)
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where

b̂(�) = e−i�â d (� + �) and b̂ d (�) = e−i�â(� + �). (1.11)

Then the corresponding wavelet systems X(�) and X(�d) form biorthogonal Riesz wavelet bases
for L2(R) (see e.g. [5,6,19]). Since the mask a is assumed throughout this paper to be finitely
supported, the wavelet mask bd is also finitely supported. Therefore, �d can be written as a linear
combination of �d , which means that �d has the same regularity as �d .

As we see from this framework, the key step in the construction is to design a pair of stable
refinable functions satisfying (1.8). In the rest of this paper, we shall focus on the constructions
of dual refinable functions �d from pseudo-splines with prescribed regularity.

This paper is organized as follows. Section 2 is devoted to constructions of dual refinable
functions from pseudo-splines of both types and provide a regularity analysis. We shall give an
implementable construction to obtain a class of dual refinable functions satisfying any prescribed
regularity from an arbitrarily given pseudo-spline. In Section 3, a rather explicit formula of dual
refinable functions from pseudo-splines of type II with order (m, m−1) is provided. Two examples
of biorthogonal wavelets constructed in Section 3 are given in the last section.

2. Duals of pseudo-splines

In this section, we construct biorthogonal dual refinable functions from pseudo-splines, which
can satisfy arbitrarily high order of regularity.

The regularity is defined as the followings: Recall that for � = n + �, n ∈ N, 0�� < 1, the
Hölder space C� (see e.g. [9]) is defined to be the set of functions which are n times continuously
differentiable and such that the nth derivative f (n) satisfies the following condition:

|f (n)(x + h) − f (n)(x)|�C|h|�, ∀x, h.

The number � is called the regularity (exponent) of f . It is well known (see e.g. [9]) that if∫
R

|f̂ (�)|(1 + |�|)� < ∞,

then f ∈ C�. In particular, if |f̂ (�)|�C(1 + |�|)−1−�−ε holds for an arbitrary small ε > 0,
f ∈ C�, which means that the regularity of f can be estimated via the decay of its Fourier
transform.

We first give the existence of dual refinable functions with the prescribed regularity which
immediately follows from the result of [27].

Theorem 2.1 (Lemarié-Rieusset [27]). Let � ∈ L2(R) be compactly supported refinable func-
tion whose shifts are linearly independent. Then, for an arbitrary � > 0, there exists a compactly
supported refinable function �d ∈ L2(R) with regularity �, such that �d is the biorthogonal dual
refinable function of �.

Applying this theorem together with the fact that the shifts of pseudo-splines are linearly
independent, we have:

Corollary 2.2. Let � be a pseudo-spline. Then, for an arbitrary � > 0, there exists a compactly
supported refinable function �d ∈ L2(R) with regularity �, such that �d is the biorthogonal dual
refinable function of �.
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Remark 2.3.
(1) The original theorem of [27] is stated in a different way. The compactly supported refinable

function � is assumed in [27] to be stable and have a minimal support. (A stable refinable
function � having a minimal support means, according to [27], that its symbol does not have
symmetric zeros on C\{0}.) This is equivalent to that � has linearly independent shifts by
Lemma 2.1 of [12] (see also [24]).

(2) In the approach taken by [27], for a given compactly supported refinable function � ∈ L2(R)

with linearly independent shifts, the existence of a compactly supported dual refinable function
satisfying any desired regularity is reduced to the existence of a compactly supported dual
refinable function in L2(R). The proof of existence of a compactly supported dual refinable
function in L2(R) for a given � starts with a finitely supported dual mask of some refinable
distribution, which is derived by solving (2.2) numerically and may not even be pre-stable.
Then use this mask and another sequence obtained by truncating the standard infinite dual
mask of a to derive a finitely supported dual mask of a whose corresponding refinable function
is in L2(R) and stable. To obtain a dual refinable function with higher regularity, it repeats
the above processing by constructing an L2 dual of function Bm ∗ � instead of �. To see this
(see also [27]), let us consider Bm ∗ �, with any given m�1, where Bm is B-spline of order
m whose Fourier transform is

B̂m :=
(

1 − e−i�

i�

)m

.

It can be easily verified that Bm ∗ � has linearly independent shifts. If there is a compactly
supported dual refinable function g ∈ L2(R) of Bm ∗�, then �d := Bm(−·)∗g is a compactly
supported dual of � with regularity at least m − 1 − ε. Indeed, since for compactly supported
functions �, �d ∈ L2(R),

〈�, �d(· − k)〉 = �(k), k ∈ Z,

is equivalent to

[�̂, �̂
d ] = 1,

(see e.g. [6,9]), we have

[�̂, B̂mĝ] = [B̂m�̂, ĝ] = 1.

Next, we explore a constructive way to get duals of pseudo-splines with prescribed regularities.
For this, we first note that if the pseudo-spline of type II with order (m, l) has a compactly
supported dual refinable function with regularity �, then we can obtain a compactly supported
refinable function with regularity at least � that is dual to the pseudo-spline of type I with the
same order. Indeed, for the pseudo-spline 2�(m,l) of type II with order (m, l), let 2�

d ∈ L2(R) be

its compactly supported dual refinable function with regularity �. Since 2�̂(m,l) = |1�̂(m,l)|2 =
1�̂(m,l) · 1�̂(m,l), we have

1 = [2�̂(m,l), 2�̂
d ] = [1�̂(m,l) · 1�̂(m,l), 2�̂

d ] = [1�̂(m,l), 1�̂(m,l) · 2�̂
d ].

Therefore,

1�̂
d := 1�̂(m,l) · 2�̂

d
(2.1)
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is a compactly supported dual refinable function with the regularity at least � by the fact that
1�̂(m,l) ∈ L∞(R). Hence, we only need to construct dual refinable functions of pseudo-splines
of type II. In the rest of this section, we focus on discussions of dual refinable functions of
pseudo-splines of type II with any prescribed regularity.

Construction of compactly supported dual refinable function �d always starts from constructing
a dual mask ad from a such that (1.9) is satisfied. This can be done whenever the symbol ã(z) does
not have symmetric zeros on C\{0}. In fact, it is well known that in this case (see e.g. [6,9,20])
one can always find ãd (z) such that

ã(z)ãd(z−1) + ã(−z)ãd(−z−1) = 1, z ∈ C\{0}. (2.2)

Indeed, let

ãe(z
2) :=

∑
j∈Z

a(2j)z2j and ão(z
2) :=

∑
j∈Z

a(2j + 1)z2j .

Then,

ã(z) = ãe(z
2) + zão(z

2) and ã(−z) = ãe(z
2) − zão(z

2). (2.3)

Since ã(z) does not have symmetric zeros on C\{0}, ãe(z
2) and ão(z

2) do not have common zeros
on C\{0} by (2.3). Then the Hilbert’s Nullstellensatz assures the existence of Laurent polynomials
q̃e and q̃o such that

ãe(z
2)q̃e(z

2) + ão(z
2)q̃o(z

2) = 1
2z2k for all z ∈ C\{0} and k ∈ N. (2.4)

Let

q̃(z) := q̃e(z
2) + z−1q̃o(z

2),

and define

ãd (z) := z2kq̃(z−1).

Then, ã and ãd satisfy (2.2) by applying (2.3) and (2.4). Let ad be the coefficients of ãd (z). We
conclude that â and â d satisfy (1.9).

The solutions to (2.2) can be obtained by solving a polynomial equation utilizing Maple and
Singular [15], which is an ad hoc construction, although sometimes it can be very efficient in both
univariate and multivariate constructions (see e.g. [29]). The more efficient and systematic way of
solving equation (2.2) is the method called construction by cosets (CBC), which was suggested
in [4,17]. The method starts with a dual mask of a given refinement mask, then lifts the dual mask
to a new dual mask whose underlying refinable function satisfies a desired order of the Stang-
Fix condition. It should also be pointed out that the CBC algorithm gives the minimal support
of the dual refinable functions for a given order of the Strang-Fix condition. All approaches of
solving Eq. (2.2) normally derive dual refinable functions that satisfy some given order of Strang-
Fix condition. The regularity has to be checked one by one numerically using methods given in
[7,9,18,21,33], although the regularity of a refinable function seems to increase as the order of
Strang-Fix condition increases by numerical tests. Furthermore, since (2.2) is only a necessary
condition for the underlying refinable functions � and �d to be a dual pair for any given solution
of Eq. (2.2), one needs to further check the stability of �d , which can also be done numerically
by methods given in [9,26].
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Our method for pseudo-splines is similar to the both methods above in the aspect that we also
start with a dual refinement mask satisfying very mild conditions, then create new dual masks
from it. The difference is that we obtain new dual masks from this initial mask, whose underlying
refinable functions are stable and have prescribed regularities. Since the regularity of a compactly
supported refinable function implies its order of the Strang-Fix condition (see e.g. [3,28,31]), and
since once the prescribed regularity is given, the method gives a dual with the given regularity by
choosing a proper parameter, our approach gains more than what the above methods may offer to
pseudo-splines.

We start from an arbitrary pseudo-spline � of type II with order (m, l), m�2, 0� l�m − 1,
whose refinement mask is a. The first step is to find an initial finitely supported dual mask b. As
we will see that for the case m = 1, the construction and the regularity analysis have already been
considered in [6] (also see [9]).

Condition 2.4. Let b be a finitely supported mask satisfying:

(1) b is a (real-valued) dual mask of a, i.e.

â(�)̂b(�) + â(� + �)̂b(� + �) = 1,

(2) b̂ is real-valued and nonnegative;
(3) The refinable distribution ϑ, corresponding to the refinement mask b, is pre-stable.

Remark 2.5. Note that we did not require ϑ to be a function, and just require that it is pre-stable.
Actually, by Corollary 2.2, there always exists a mask b such that ϑ is a compactly supported
stable refinable function in L2(R), which is a much more strong condition than part (3) above. For
a given refinement mask a, it is not difficult to find such an initial dual mask b by CBC method
of [4,17]. Once we have this b, the prescribed regularity dual refinable function can be built up.

The idea here is to use the mask ĉ := âb̂. Let 	 be the corresponding refinable distribution of
c. We will show that c and 	 satisfy the following properties:

Proposition 2.6. Let � be a pseudo-spline of type II with mask a and ϑ be the refinable distribution
corresponding to the mask b, which satisfies all the conditions in Condition 2.4. Let ĉ = âb̂

and 	 be the corresponding refinable distribution. Then:

(1) ĉ is real-valued and nonnegative;
(2) 	 belongs to L2(R);
(3) 	 is stable.

Proof. Part (1) is immediate by the fact that both â and b̂ are real-valued and nonnegative.
Part (2) can be established by using Lemma 6.2.1 of [9]. Indeed, since the trigonometric

polynomial ĉ is nonnegative and ĉ(�) + ĉ(� + �) = 1, there exists (by Fejér–Riesz Lemma) a
trigonometric polynomial ĥ such that |̂h|2 = ĉ and |̂h(�)|2 + |̂h(� + �)|2 = 1. Let f be the
corresponding refinable distribution to mask h. Lemma 6.2.1 of [9] gives that f̂ ∈ L2(R). Since
|f̂ |2 = 	̂, we conclude that 	̂ ∈ L1(R). Hence, 	 is compactly supported and continuous, which
gives that 	 ∈ L2(R).

For part (3), since 	 is compactly supported and belongs to L2(R), we only need to show that
	 is pre-stable by checking whether 	̂ has 2�-periodic zeros or not (see e.g. [22]). We first prove
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that the set of all zeros of �̂ is {2�p}p∈Z\{0}. Note that �̂ can be written as �̂ = B̂ 2mĝ where g is
a refinable distribution with refinement mask d defined by

d̂(�) :=
l∑

j=0

(
m + l

j

)
sin2j (�/2) cos2(l−j)(�/2).

Applying the following identity of Lemma 2.2 in [11] and letting y = sin2(�/2),

l∑
j=0

(
m + l

j

)
yj (1 − y)l−j =

l∑
j=0

(
m − 1 + j

j

)
yj , y ∈ R, (2.5)

the mask d̂ can be rewritten as

d̂(�) =
l∑

j=0

(
m − 1 + j

j

)
sin2j (�/2).

Then it is obvious that d̂ �1 on R, which implies that ĝ > 0 on R. Therefore, the set of all zeros
of �̂ is the same as that of B̂ 2m which is exactly {2�p}p∈Z\{0}.

Now we shall prove the pre-stability of 	 by contradiction. Suppose that �0 is a 2�-periodic
zero of 	̂, i.e.

	̂(�0 + 2�k) = �̂(�0 + 2�k)̂ϑ(�0 + 2�k) = 0,

for all k ∈ Z. Since by assumption, ϑ̂ does not have 2�-periodic zeros, there must be some
k0 ∈ Z, such that �̂(�0 + 2�k0) = 0. Since the zero set of �̂ is {2�p}p∈Z\{0}, there exists
p0 ∈ Z\{0} such that �0 + 2�k0 = 2�p0, i.e. �0 = 2�(p0 − k0) =: 2�m0. This gives that
	̂(�0 + 2�k) = 	̂(2�m0 + 2�k) = 0 for all k ∈ Z. In particular, when k = −m0, we have
	̂(0) = 0. Since �̂(0) = 1, we must have ϑ̂(0) = 0. However, since b̂(0) = 1, we should have
that ϑ̂(0) = 1. This is a contradiction. �

Having the mask c in hand, we first note by the construction of c and the fact that b is a dual
mask of a, we have

ĉ(�) + ĉ(� + �) = 1.

Thus

(̂c + ĉ(· + �))2n−1 = 1 for n�2. (2.6)

The first n terms of the binomial expansion in (2.6) is

n−1∑
j=0

(
2n − 1

j

)
ĉ 2n−1−j ĉ j (· + �) = ĉ n

n−1∑
j=0

(
2n − 1

j

)
ĉ n−1−j ĉ j (· + �). (2.7)

Since ĉ = âb̂, we can factorize one â out from the right hand side of (2.7) and the rest is denoted as
â d . As we shall see in a moment that the mask ad is indeed a dual mask of a and the corresponding
refinable function �d is indeed a dual of �. The detailed construction is given as the following.
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Construction 2.7. Let � be pseudo-spline of type II with order (m, l) and a be its refinement
mask. Let b be the initial dual mask of a satisfying all the conditions in Condition 2.4, and
ĉ = âb̂. Then define mask ad as

â d := b̂ · ĉ n−1 ·
n−1∑
j=0

(
2n − 1

j

)
ĉ n−1−j (1 − ĉ )j . (2.8)

The corresponding compactly supported refinable function is defined as

�̂
d
(�) :=

∞∏
j=1

â d (2−j�).

Remark 2.8. The idea here is not new. Similar idea as given in the above construction can
also be found in [16,34,37,38]. Furthermore, this idea was used in [20] to construct multivariate
biorthogonal wavelets via the multivariate interpolatory refinable functions, which also leads to
the dual refinable functions of box splines with arbitrarily high regularity. The interested reader
may consult these papers for details. Here, we not only give a construction, but also give a more
precise regularity analysis for the construction. It is also worthy to point out that one can choose
the power 2n instead of 2n − 1 in (2.6). The argument presented here still works after a proper
adjustment of the last term in the summation of the definition of â d (see e.g. [20]). Finally, we
note that all the dual refinable functions obtained by Construction 2.7 are symmetric, which is
desirable in many applications.

To ensure that the corresponding refinable functions �d is indeed a dual of �, we need to verify
that (see e.g. [6,36]): (1), ad is a dual mask of a, i.e. a and ad satisfy (1.9); (2), �d is stable. For
the first condition, we note that the first n terms of the expansion of (2.6) is exactly â â d and
the last n terms of the expansion of (2.6) is exactly â(· + �)̂a d(· + �) by applying the identity
ĉ(· + �) = 1 − ĉ. Thus, the first condition follows from identity (2.6). For the second condition,
since �d is compactly supported, the stability of �d will follow from that: (1), �d is pre-stable;
(2), �d ∈ L2(R). We will prove the pre-stability of �d in Proposition 2.10 and �d ∈ L2(R) in
Theorem 2.11. In fact, Theorem 2.11 says more than �d ∈ L2(R). It shows that the regularity
exponent of �d increases as we choose larger n in Construction 2.7.

The proof of the following proposition employs the following lemma of [20].

Lemma 2.9 (Ji et al. [20]). Let �1 and �2 be two compactly supported refinable functions in
L2(R) with refinement masks a1 and a2. Suppose the set of all zeros of â1 contains that of
the mask â2. If �1 is pre-stable, then �2 is pre-stable.

Proposition 2.10. Let �d be the compactly supported refinable distribution with refinement mask
ad given in (2.8). Then �d is pre-stable.

Proof. To show the pre-stability of �d , we prove that the set of all zeros of â d coincides with
that of ĉ. With this, the pre-stability of �d follows from the pre-stability of 	 by applying Lemma
2.9. In fact, since for � ∈ R

ĉ(�)�0 and ĉ(�) + ĉ(� + �) = 1,
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one obtains that 0� ĉ�1. Applying (2.5) with m = n, l = n − 1, y = 1 − ĉ and by the fact that
ĉ�1, one obtains

n−1∑
j=0

(
2n − 1

j

)
ĉ n−1−j (1 − ĉ )j =

n−1∑
j=0

(
n − 1 + j

j

)
(1 − ĉ )j �1.

Since

â d = b̂ · ĉ n−1 ·
n−1∑
j=0

(
2n − 1

j

)
ĉ n−1−j (1 − ĉ )j ,

we have that the set of all zeros of â d coincides with that of b̂ ĉ n−1. Furthermore, since ĉ = â b̂

and since

b̂ ĉ n−1 = b̂ (̂a b̂) n−1 = â n−1 b̂ n,

the set of all zeros of ĉ coincides with that of b̂ ĉ n−1 and, hence, coincides with that of â d . �

Now we shall analyze the regularity of �d by estimating the decay of |�̂ d |, and show that the
regularity of �d increases as the parameter n in Construction 2.7 increases.

Let

L :=
n−1∑
j=0

(
2n − 1

j

)
ĉ n−1−j (1 − ĉ )j . (2.9)

Then,

â d = b̂ ĉ n−1L.

This gives that

�̂
d
(�) = ϑ̂(�)̂	

n−1
(�)

∞∏
j=1

L(2−j�). (2.10)

Since |̂ϑ| is uniformly bounded and since 	̂ = ϑ̂ �̂, we have

|̂ϑ 	̂
n−1| = |̂ϑ n

�̂
n−1|�C|�̂ n−1|.

Recall that the optimal decay of |�̂| was given in Theorem 3.4 of [11], i.e.

|�̂(�)|�C(1 + |�|)−s ,

where

s := 2m − log Pm,l(
3
4 )

log 2
(2.11)

and

Pm,l(y) =
l∑

j=0

(
m + l

j

)
yj (1 − y)l−j . (2.12)
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Consequently, we have

|̂ϑ(�)̂	
n−1

(�)|�C(1 + |�|)−s(n−1). (2.13)

Since, by (2.5),

L =
n−1∑
j=0

(
n − 1 + j

j

)
(1 − ĉ )j ,

and since 0� ĉ�1, one can see that L reaches its maximum value at ĉ = 0 (note that ĉ(�) = 0).
Therefore,

max
�∈[0,2�]

|L(�)| =
(

2n − 1

n

)
.

Then Lemma 7.1.1 of [9] gives that

∞∏
j=1

L(2−j�)�C(1 + |�|)
log (2n−1

n )
log 2 ,

and hence, by (2.10), (2.13) and the above inequality, one obtains,

|�̂ d
(�)|�C(1 + |�|)−
, (2.14)

where


 := s(n − 1) − log
(2n−1

n

)
log 2

. (2.15)

Hence �d ∈ C
−1−ε.
We note that the estimate given here is not optimal. It leads to a lower bound of the regularity of

�d . We remark that the optimal Sobolev regularity of a given refinable function can be obtained
via its mask by applying transfer operator (see [9,33] and references in there). Although the
transfer operator approach is very efficient to compute the exact Sobolev regularity for each given
refinable function, it cannot be used to analyze the regularity for a set of refinable functions
obtained through a systematic construction.

In the following theorem, we will show that for pseudo-splines of type II with order m�2, the

decay rate 
 of |�̂ d | increases as n increases. Moreover, an asymptotic analysis of the regularity
of �d is provided.

Theorem 2.11. Let �d be the compactly supported refinable functions with refinement mask ad

given in (2.8). The decays of �̂
d

is given by (2.14). Then:

(1) The decay rate 
 of �̂
d

given in (2.15) increases as n increases. Consequently, �d is continuous
for all n�2 and its regularity exponent increases as n increases, where �d ∈ C
−1−ε for all
ε > 0. In particular, �d ∈ L2(R) for all n�2.
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(2) Asymptotically for large n with fixed m, the decay rate 
 is �n, where � = s −2 with s defined
in (2.11). Consequently we have,

|�̂ d
(�)|�C(1 + |�|)−�n, �d ∈ C�n,

asymptotically for large n.

Proof. For part (1), we first show that 
 increases as n increases, which is equivalent to show that

M := sn − log
(2n+1

n+1

)
log 2

− s(n − 1) + log
(2n−1

n

)
log 2

> 0.

Simplifying M , one obtains

M = s −
log

(2n+1
n+1 )

(2n−1
n )

log 2

= s − log 4n+2
n+1

log 2

= s − 2 − log
n+ 1

2
n+1

log 2
> s − 2.

Since the decay rate s decreases as l increases and increases as m increases (see Proposition 3.5
of [11]), and s > 2.678 for m = 2, l = 1, we have that s > 2.678 for all m�2 and 0� l�m − 1.
Hence, we have M > s − 2 > 0. Consequently, the regularity exponent 
− 1 − ε of �d increases
as n increases. Since for n = 2 we have that


 = s − log 3

log 2
> 2.678 − log 3

log 2
> 1.09,

this proves that �d is continuous for all n�2 and, hence, �d ∈ L2(R) for all n�2.
For part (2), we consider the asymptotic behavior of 
 when n is large. Note that


 = (n − 1)s − log
(2n−1

n

)
log 2

= n

((
1 − 1

n

)
s −

1
n

log
(2n−1

n

)
log 2

)
.

We now use Stirling approximation, i.e. n! ∼ √
2�e(n+ 1

2 ) log n−n (see e.g. [14]) to estimate
1
n

log
(2n−1

n

)
for large n. We have

1

n
log

(
2n − 1

n

)
∼ 1

n
(log(2n − 1)! − log n! − log(n − 1)!)

∼ 1

n

(
log

(√
2�e(2n− 1

2 ) log(2n−1)−(2n−1)
)

− log
(√

2�e(n+ 1
2 ) log n−n

)
− log

(√
2�e(n− 1

2 ) log(n−1)−(n−1)
))

∼ 1

n

((
2n − 1

2

)
log(2n − 1) − (2n − 1) −

(
n + 1

2

)
log n + n

−
(

n − 1

2

)
log(n − 1) + (n − 1)

)
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∼ 1

n

((
2n − 1

2

)
log(2n − 1) −

(
n + 1

2

)
log n −

(
n − 1

2

)
log(n − 1)

)
∼ 2 log(2n − 1) − log n − log(n − 1)

∼ log

(
4n2 − 4n + 1

n(n − 1)

)
∼ 2 log 2.

Applying the above approximation to the estimate of 
 one obtains


 = n

((
1 − 1

n

)
s −

1
n

log
(2n−1

n

)
log 2

)
∼ n

(
s − 2 log 2

log 2

)
= n(s − 2).

Thus we have shown that 
 ∼ (s − 2)n, asymptotically for large n. Consequently, one obtains
that for large n,

|�̂ d
(�)|�C(1 + |�|)−�n, �d ∈ C�n,

with � = s − 2.

So far we have shown in Proposition 2.10 that �d is pre-stable and proved in part (1) of Theorem
2.11 that �d ∈ L2(R). Furthermore, �d is compactly supported as one can easily see from the
Construction 2.7. Therefore, we conclude that �d is stable. Having the stability of �d , together
with a and ad satisfying (1.9), Theorem 3.14 of [36] (also see [6]) leads to the conclusion that �
and �d is a pair of dual refinable functions, i.e.

〈�, �d(· − k)〉 = �(k).

Therefore, the corresponding pair of biorthogonal Riesz wavelets � and �d can be constructed
by (1.10) and (1.11), and the systems X(�) and X(�d) form a pair of biorthogonal Riesz wavelet
bases for L2(R).

Remark 2.12. The pair of masks â, â d in Construction 2.7 can be viewed as one of many possible
factorizations of the trigonometric polynomial

n−1∑
j=0

(
2n − 1

j

)
ĉ 2n−1−j ĉ j (· + �)

given by (2.7). In fact, we can choose factorization ĥ and ĥ d arbitrarily such that

ĥ ĥ d =
n−1∑
j=0

(
2n − 1

j

)
ĉ 2n−1−j ĉ j (· + �).

When the compactly supported refinable functions corresponding to the masks h and hd are in
L2(R) and pre-stable, a dual pair of compactly supported biorthogonal wavelet systems can be
derived from them. For example, let n′ > 0 and define

ĥ := ĉ n′
and ĥ d :=

n−1∑
j=0

(
2n − 1

j

)
ĉ 2n−2−n′−j (1 − ĉ )j , n′ �1.
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As long as n and n′ are chosen properly, one can get a desired dual pair of refinement masks for
a dual pair of compactly supported refinable functions. In particular, let ĉ = cos2(�/2) be the
mask of piecewise linear B-spline which is interpolatory. Then, the construction here coincides
with the biorthogonal wavelet construction given in [6].

For the dual mask ad given in Construction 2.7, we cannot have an explicit form of it in general,
because we need to find mask b numerically first. For some special pseudo-splines, however, we
do have an explicit form for all the dual masks constructed from Construction 2.7. In the next
section we will give a detailed construction of dual refinable functions from pseudo-splines of
type II with order (m, m − 1).

3. Duals of a special case

Let � be pseudo-spline of type II with order (m, m − 1) with m�1, i.e. an interpolatory
refinable function, and let a be its refinement mask. Since � is interpolatory, the mask â satisfies
â + â (·+�) = 1. Hence, b̂ in Condition 2.4 can be simply chosen to be 1, and the corresponding

refinable distribution is ϑ̂ = 1. Then all the conditions in Condition 2.4 are satisfied. Following
the construction given by (2.8), one can obtain the dual mask â d as

â d := â n−1
n−1∑
j=0

(
2n − 1

j

)
â n−1−j (1 − â )j . (3.1)

The corresponding refinable function �̂
d

can be defined as

�̂
d
(�) :=

∞∏
j=1

â d (2−j�).

Since b̂ = 1, we have ĉ = b̂ â = â, where c given in Proposition 2.6. Therefore, the trigonometric
polynomial L defined in (2.9) can now be written as,

L =
n−1∑
j=0

(
2n − 1

j

)
â n−1−j (1 − â )j .

This gives that

�̂
d
(�) = �̂

n−1
(�)

∞∏
j=1

L(2−j�).

Since â satisfies 0� â�1 and since ϑ̂ = 1, following a similar argument in Section 2 we have
that

|�̂ d
(�)|�C(1 + |�|)−�, (3.2)

where the decay rate � satisfies

� = s(n − 1) − log
(2n−1

n

)
log 2

(3.3)

with s′ = 2m − log Pm,m−1(
3
4 )

log 2 , and Pm,l(y) defined in (2.12). Hence �d ∈ C�−1−ε.
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Table 1
In the estimates of �, |�̂ d

(�)|�C(1 + |�|)−�

� n = 2 n = 3 n = 4 n = 5 n = 6

m = 2 1.0931 2.0342 2.9049 3.7350 4.5386
m = 3 1.6871 3.2222 4.6870 6.1110 7.5086
m = 4 2.2411 4.3282 6.3459 8.3230 10.2736

The decay estimates for |�̂ d | here are not accurate. However, for the simplest case when m = 1,

i.e. â = cos2(�/2), we do have optimal decay estimate for |�̂ d |. Indeed, in this case

â d = cos2n−2(�/2)

n−1∑
j=0

(
2n − 1

j

)
cos2(n−1−j)(�/2) sin2j (�/2)

= cos2n−2(�/2)

n−1∑
j=0

(
2n − 1

j

)
sin2j (�/2)(1 − sin2(�/2))(n−1−j).

The optimal decay of �̂
d

is

|�̂ d
(�)|�C(1 + |�|)−�, (3.4)

where

� := 2(n − 1) − log Pn,n−1(
3
4 )

log 2
. (3.5)

The complete construction and analysis for this special case have already been given by [6] (see
also [9]). In fact, by applying the approach in Remark 2.12 this leads to their construction of a
pair of biorthogonal compactly supported symmetric wavelets with any prescribed regularity.

Table 1 gives the decay rates of |�̂ d | in (3.3) with some choices of m and n.

Next, we will give an asymptotic analysis of the decay of �̂
d

given in (3.2) in terms of its

refinement mask â d given in (3.1). For m = 1, the asymptotic analysis of decay of �̂
d

given in
(3.4) can be done by following the analysis in [6] or [9], which leads to the optimal decay rate
0.4150 · · · .

Proposition 3.1. Let �d be the refinable function with the refinement mask ad given in (3.1). The

decay of �̂
d

is given by (3.2). Then:

(1) For fixed m�2 and asymptotically for large n, we have

|�̂ d
(�)|�C(1 + |�|)−
n and �d ∈ C
n,

where 
 = 2(m − 1) − log Pm,m−1(
3
4 )

log 2 .

(2) For fixed n�2 and asymptotically for large m, we have

|�̂ d
(�)|�C(1 + |�|)−�m and �d ∈ C�m,

where � =
(

2 − log 3
log 2

)
(n − 1).
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Table 2
In the estimates of 
, |�̂ d

(�)|�C(1 + |�|)−
n, asymptotically for large n

m = 1 m = 2 m = 3 m = 4 m = 5


 0.4150 0.6781 1.2721 1.8251 2.3532

Table 3
In the estimates of �, |�̂ d

(�)|�C(1 + |�|)−�m, asymptotically for large m

n = 2 n = 3 n = 4 n = 5 n = 6

� 0.4150 0.8301 1.2451 1.6601 2.0752

Proof. Part (1) is immediate from part (2) of Theorem 2.11 by letting s = 2m − log Pm,m−1(
3
4 )

log 2 .
For part (2), let m be asymptotically large and n be fixed. Then,

� = (n − 1)

(
2m − log Pm,m−1(

3
4 )

log 2

)
− log

(2n−1
n

)
log 2

∼ m(n − 1)

⎛⎝2 −
1
m

log Pm,m−1

(
3
4

)
log 2

⎞⎠ .

Recall that we have already shown in Theorem 3.6 of [11] (see also [9,39,25]) that

1

m
Pm,m−1

(
3

4

)
∼ log 3. (3.6)

Applying (3.6) one obtains

� ∼ m(n − 1)

(
2 − log 3

log 2

)
=: �m.

Thus we have shown that with fixed n,

|�̂ d
(�)|�C(1 + |�|)−�m and �d ∈ C�m,

with � = (n − 1)
(

2 − log 3
log 2

)
.

Tables 2 and 3 provide some numerical results for the asymptotic rates � and � given by
Proposition 3.1.

4. Examples

In this section, we give two examples of biorthogonal Riesz wavelets constructed in Section
3. In the first example, we start with pseudo-spline of type II with order (2, 1) and n = 2; in the
second one, we start with pseudo-spline of type II with order (3, 2) and n = 2.

Example 4.1. We first choose â to be the refinement mask of a pseudo-spline of type II with
order (2, 1), i.e.

â = cos4(�/2)(1 + 2 sin2(�/2)).
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Fig. 1. The figures of � and �d in Example 4.1 are given in graphs (a) and (b). Figures of the corresponding Riesz wavelets
� and �d are given in (c) and (d).
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Fig. 2. The figures of � and �d in Example 4.2 are given in graphs (a) and (b). Figures of the corresponding Riesz wavelets
� and �d are given in (c) and (d).

By Construction 2.7 with n = 2 we have that

â d := â (3 − 2 · â ) .

Define wavelet masks and wavelets as

b̂(�) = e−i�â d (� + �) and b̂ d (�) = e−i�â(� + �);
�̂(2�) = b̂ (�)�̂(�) and �̂

d
(2�) = b̂ d (�)�̂

d
(�),

where �̂ and �̂
d

are the refinable functions corresponding to the refinement masks â and â d . The
systems X(�) and X(�d) form a pair of biorthogonal wavelet bases for L2(R). The figures of �,
�d , � and �d are given in Fig. 1.

Example 4.2. We first choose â to be the refinement mask of a pseudo-spline of type II with
order (3, 2), i.e.

â = cos6(�/2)(1 + 3 sin2(�/2) + 6 sin4(�/2)).

By Construction 2.7 with n = 2 we have that

â d := â (3 − 2 · â ) .

Define wavelet masks and wavelets as

b̂(�) = e−i�â d (� + �) and b̂ d (�) = e−i�â(� + �);
�̂(2�) = b̂(�)�̂(�) and �̂

d
(2�) = b̂ d (�)�̂

d
(�),
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where �̂ and �̂
d

are the refinable functions corresponding to the refinement masks â and â d . The
systems X(�) and X(�d) form a pair of biorthogonal wavelet bases for L2(R). The figures of �,
�d , � and �d are given in Fig. 2.
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